src.canns.task.open_loop_navigation

Classes

ActionPolicy

Abstract base class for action policies that control agent movement.

CustomOpenLoopNavigationTask

Template class for policy-based open-loop navigation tasks.

OpenLoopNavigationData

Container for the inputs recorded during the open-loop navigation task.

OpenLoopNavigationTask

Open-loop spatial navigation task that synthesises trajectories without

RasterScanNavigationTask

Preset task for cyclic dual-mode state-aware raster scan exploration.

StateAwareRasterScanPolicy

State-aware raster scan policy with cyclic dual-mode exploration.

TMazeOpenLoopNavigationTask

Open-loop navigation task in a T-maze environment.

TMazeRecessOpenLoopNavigationTask

Open-loop navigation task in a T-maze environment with recesses at stem-arm junctions.

Functions

map2pi(a)

Module Contents

class src.canns.task.open_loop_navigation.ActionPolicy[source]

Bases: abc.ABC

Abstract base class for action policies that control agent movement.

Action policies compute parameters for agent.update() at each simulation step, enabling reusable, testable, and composable control strategies.

Example

```python class ConstantDriftPolicy(ActionPolicy):

def __init__(self, drift_direction):

self.drift = np.array(drift_direction)

def compute_action(self, step_idx, agent):

return {‘drift_velocity’: self.drift}

task = CustomOpenLoopNavigationTask(

duration=100, action_policy=ConstantDriftPolicy([0.1, 0.0])

)

abstractmethod compute_action(step_idx, agent)[source]

Compute action parameters for the current simulation step.

Parameters:
  • step_idx (int) – Current simulation step (0 to total_steps-1)

  • agent (canns_lib.spatial.Agent) – Agent instance (for state-aware policies)

Returns:

Keyword arguments for agent.update()

Supported keys: - drift_velocity: np.ndarray of shape (2,) for 2D drift - drift_to_random_strength_ratio: float (typically 5.0-20.0) - forced_next_position: np.ndarray of shape (2,)

Return type:

dict

class src.canns.task.open_loop_navigation.CustomOpenLoopNavigationTask(*args, action_policy=None, **kwargs)[source]

Bases: OpenLoopNavigationTask

Template class for policy-based open-loop navigation tasks.

This class enables custom action policies by accepting an ActionPolicy object that controls agent movement at each simulation step.

Parameters:
  • action_policy (ActionPolicy | None) – ActionPolicy instance controlling agent movement

  • **kwargs – All other arguments passed to OpenLoopNavigationTask

Example

```python # Define custom policy class MyPolicy(ActionPolicy):

def compute_action(self, step_idx, agent):

return {‘drift_velocity’: np.array([0.1, 0.0])}

# Use it task = CustomOpenLoopNavigationTask(

duration=100, action_policy=MyPolicy()

) task.get_data() ```

action_policy = None[source]
class src.canns.task.open_loop_navigation.OpenLoopNavigationData[source]

Container for the inputs recorded during the open-loop navigation task. It contains the position, velocity, speed, movement direction, head direction, and rotational velocity of the agent.

Additional fields for theta sweep analysis: - ang_velocity: Angular velocity calculated using unwrap method - linear_speed_gains: Normalized linear speed gains [0,1] - ang_speed_gains: Normalized angular speed gains [-1,1]

ang_speed_gains: numpy.ndarray | None = None[source]
ang_velocity: numpy.ndarray | None = None[source]
hd_angle: numpy.ndarray[source]
linear_speed_gains: numpy.ndarray | None = None[source]
movement_direction: numpy.ndarray[source]
position: numpy.ndarray[source]
rot_vel: numpy.ndarray[source]
speed: numpy.ndarray[source]
velocity: numpy.ndarray[source]
class src.canns.task.open_loop_navigation.OpenLoopNavigationTask(duration=20.0, start_pos=(2.5, 2.5), initial_head_direction=None, progress_bar=True, width=5, height=5, dimensionality='2D', boundary_conditions='solid', scale=None, dx=0.01, grid_dx=None, grid_dy=None, boundary=None, walls=None, holes=None, objects=None, dt=None, speed_mean=0.04, speed_std=0.016, speed_coherence_time=0.7, rotational_velocity_coherence_time=0.08, rotational_velocity_std=120 * np.pi / 180, head_direction_smoothing_timescale=0.15, thigmotaxis=0.5, wall_repel_distance=0.1, wall_repel_strength=1.0, rng_seed=None)[source]

Bases: src.canns.task.navigation_base.BaseNavigationTask

Open-loop spatial navigation task that synthesises trajectories without incorporating real-time feedback from a controller.

calculate_theta_sweep_data()[source]

Calculate additional fields needed for theta sweep analysis. This should be called after get_data() to add ang_velocity, linear_speed_gains, and ang_speed_gains to the data.

get_data()[source]

Generates the inputs for the agent based on its current position.

get_empty_trajectory()[source]

Returns an empty trajectory data structure with the same shape as the generated trajectory. This is useful for initializing the trajectory data structure without any actual data.

import_data(position_data, times=None, dt=None, head_direction=None, initial_pos=None)[source]

Import external position coordinates and calculate derived features.

This method allows importing external trajectory data (e.g., from experimental recordings or other simulations) instead of using the built-in random motion model. The imported data will be processed to calculate velocity, speed, movement direction, head direction, and rotational velocity.

Parameters:
  • position_data (np.ndarray) – Array of position coordinates with shape (n_steps, 2) for 2D trajectories or (n_steps, 1) for 1D trajectories.

  • times (np.ndarray, optional) – Array of time points corresponding to position_data. If None, uniform time steps with dt will be assumed.

  • dt (float, optional) – Time step between consecutive positions. If None, uses self.dt. Required if times is None.

  • head_direction (np.ndarray, optional) – Array of head direction angles in radians with shape (n_steps,). If None, head direction will be derived from movement direction.

  • initial_pos (np.ndarray, optional) – Initial position for the agent. If None, uses the first position from position_data.

Raises:

ValueError – If position_data has invalid dimensions or if required parameters are missing.

Example

```python # Import experimental trajectory data positions = np.array([[0, 0], [0.1, 0.05], [0.2, 0.1], …]) # shape: (n_steps, 2) times = np.array([0, 0.1, 0.2, …]) # shape: (n_steps,)

task = OpenLoopNavigationTask(…) task.import_data(position_data=positions, times=times)

# Or with uniform time steps task.import_data(position_data=positions, dt=0.1) ```

reset()[source]

Resets the agent’s position to the starting position.

show_trajectory_analysis(show=True, save_path=None, figsize=(12, 3), smooth_window=50, **kwargs)[source]

Display comprehensive trajectory analysis including position, speed, and direction changes.

Parameters:
  • show (bool) – Whether to display the plot

  • save_path (str | None) – Path to save the figure

  • figsize (tuple[int, int]) – Figure size (width, height)

  • smooth_window (int) – Window size for smoothing speed and direction plots (set to 0 to disable smoothing)

  • **kwargs – Additional matplotlib parameters

duration = 20.0[source]
progress_bar = True[source]
run_steps[source]
total_steps[source]
class src.canns.task.open_loop_navigation.RasterScanNavigationTask(duration, width=1.0, height=1.0, step_size=0.03, margin=0.05, speed=0.15, drift_strength=15.0, **kwargs)[source]

Bases: CustomOpenLoopNavigationTask

Preset task for cyclic dual-mode state-aware raster scan exploration.

Systematically explores the environment using cyclic mode switching: 1. Horizontal phase: Left-right sweeps moving downward

→ Switches to Vertical when reaching bottom

  1. Vertical phase: Up-down sweeps moving rightward → Switches back to Horizontal when reaching right edge

  2. Cycles continuously: H → V → H → V → …

This cyclic dual-mode strategy achieves superior coverage by combining orthogonal scanning patterns and continuously adapting to avoid walls.

Performance (200s, 1.0m x 1.0m):
  • Cyclic dual-mode: ~75-80% coverage (continuous cycling)

  • Single horizontal: 54.1% coverage (29 rows)

  • +20-30% improvement over random walk

Parameters:
  • duration (float) – Simulation duration in seconds

  • width (float) – Environment width (default: 1.0)

  • height (float) – Environment height (default: 1.0)

  • step_size (float) – Scan density - smaller = denser scanning (default: 0.03)

  • margin (float) – Wall detection margin (default: 0.05)

  • speed (float) – Movement speed in m/s (default: 0.15)

  • drift_strength (float) – Drift control strength (default: 15.0)

  • **kwargs – Additional arguments passed to OpenLoopNavigationTask

Example

```python # High coverage dual-mode exploration task = RasterScanNavigationTask(

duration=200, width=1.0, height=1.0, step_size=0.03, # Dense scanning in both directions speed=0.15 # Movement speed

) task.get_data() task.show_trajectory_analysis() ```

class src.canns.task.open_loop_navigation.StateAwareRasterScanPolicy(width, height, margin=0.05, step_size=0.03, speed=0.15, drift_strength=15.0)[source]

Bases: ActionPolicy

State-aware raster scan policy with cyclic dual-mode exploration.

Scanning strategy (循环扫描): 1. Horizontal mode: Left-right sweeps moving downward

→ When reaching bottom: switch to Vertical mode

  1. Vertical mode: Up-down sweeps moving rightward → When reaching right edge: switch back to Horizontal mode

  2. Cycles continuously: H → V → H → V → … (避免撞墙)

This cyclic dual-mode approach achieves comprehensive coverage by combining orthogonal scanning patterns and avoiding wall collisions.

Tested performance (200s, 1.0m x 1.0m environment):
  • Cyclic dual-mode: ~75-80%+ coverage (continuous cycling)

  • Single horizontal: 54.1% coverage (29 rows)

Parameters:
  • width (float) – Environment width in meters

  • height (float) – Environment height in meters

  • margin (float) – Distance from wall to trigger turn (default: 0.05)

  • step_size (float) – Movement per turn in perpendicular direction (default: 0.03)

  • speed (float) – Movement speed (default: 0.15)

  • drift_strength (float) – Drift-to-random ratio for agent.update() (default: 15.0)

Example

```python policy = StateAwareRasterScanPolicy(

width=1.0, height=1.0, step_size=0.03, # Dense scanning for high coverage drift_strength=15.0

) task = CustomOpenLoopNavigationTask(

duration=200, action_policy=policy, width=1.0, height=1.0, start_pos=(0.05, 0.95) # Start at top-left

)

compute_action(step_idx, agent)[source]

Compute next action based on current agent position and scanning mode.

Implements cyclic dual-mode scanning: - Horizontal mode: Left-right sweeps moving downward - Vertical mode: Up-down sweeps moving rightward - Auto-switches between modes to avoid walls and maintain coverage

current_direction = 1.0[source]
drift_strength = 15.0[source]
height[source]
is_turning = False[source]
margin = 0.05[source]
mode = 'horizontal'[source]
speed = 0.15[source]
step_size = 0.03[source]
turn_steps_remaining = 0[source]
width[source]
class src.canns.task.open_loop_navigation.TMazeOpenLoopNavigationTask(w=0.3, l_s=1.0, l_arm=0.75, t=0.3, start_pos=(0.0, 0.15), duration=20.0, dt=None, **kwargs)[source]

Bases: OpenLoopNavigationTask

Open-loop navigation task in a T-maze environment.

This subclass configures the environment with a T-maze boundary, which is useful for studying decision-making and spatial navigation in a controlled setting.

Initialize T-maze open-loop navigation task.

Parameters:
  • w – Width of the corridor (default: 0.3)

  • l_s – Length of the stem (default: 1.0)

  • l_arm – Length of each arm (default: 0.75)

  • t – Thickness of the walls (default: 0.3)

  • start_pos – Starting position of the agent (default: (0.0, 0.15))

  • duration – Duration of the trajectory in seconds (default: 20.0)

  • dt – Time step (default: None, uses bm.get_dt())

  • **kwargs – Additional keyword arguments passed to OpenLoopNavigationTask

class src.canns.task.open_loop_navigation.TMazeRecessOpenLoopNavigationTask(w=0.3, l_s=1.0, l_arm=0.75, t=0.3, recess_width=None, recess_depth=None, start_pos=(0.0, 0.15), duration=20.0, dt=None, **kwargs)[source]

Bases: TMazeOpenLoopNavigationTask

Open-loop navigation task in a T-maze environment with recesses at stem-arm junctions.

This variant adds small rectangular indentations at the T-junction, creating additional spatial features that may be useful for studying spatial navigation and decision-making.

Initialize T-maze with recesses open-loop navigation task.

Parameters:
  • w – Width of the corridor (default: 0.3)

  • l_s – Length of the stem (default: 1.0)

  • l_arm – Length of each arm (default: 0.75)

  • t – Thickness of the walls (default: 0.3)

  • recess_width – Width of recesses at stem-arm junctions (default: t/4)

  • recess_depth – Depth of recesses extending downward (default: t/4)

  • start_pos – Starting position of the agent (default: (0.0, 0.15))

  • duration – Duration of the trajectory in seconds (default: 20.0)

  • dt – Time step (default: None, uses bm.get_dt())

  • **kwargs – Additional keyword arguments passed to OpenLoopNavigationTask

src.canns.task.open_loop_navigation.map2pi(a)[source]