src.canns.task.open_loop_navigation

Classes

OpenLoopNavigationData

Container for the inputs recorded during the open-loop navigation task.

OpenLoopNavigationTask

Open-loop spatial navigation task that synthesises trajectories without

TMazeOpenLoopNavigationTask

Open-loop navigation task in a T-maze environment.

TMazeRecessOpenLoopNavigationTask

Open-loop navigation task in a T-maze environment with recesses at stem-arm junctions.

Functions

map2pi(a)

Module Contents

class src.canns.task.open_loop_navigation.OpenLoopNavigationData[source]

Container for the inputs recorded during the open-loop navigation task. It contains the position, velocity, speed, movement direction, head direction, and rotational velocity of the agent.

Additional fields for theta sweep analysis: - ang_velocity: Angular velocity calculated using unwrap method - linear_speed_gains: Normalized linear speed gains [0,1] - ang_speed_gains: Normalized angular speed gains [-1,1]

ang_speed_gains: numpy.ndarray | None = None[source]
ang_velocity: numpy.ndarray | None = None[source]
hd_angle: numpy.ndarray[source]
linear_speed_gains: numpy.ndarray | None = None[source]
movement_direction: numpy.ndarray[source]
position: numpy.ndarray[source]
rot_vel: numpy.ndarray[source]
speed: numpy.ndarray[source]
velocity: numpy.ndarray[source]
class src.canns.task.open_loop_navigation.OpenLoopNavigationTask(duration=20.0, start_pos=(2.5, 2.5), initial_head_direction=None, progress_bar=True, width=5, height=5, dimensionality='2D', boundary_conditions='solid', scale=None, dx=0.01, grid_dx=None, grid_dy=None, boundary=None, walls=None, holes=None, objects=None, dt=None, speed_mean=0.04, speed_std=0.016, speed_coherence_time=0.7, rotational_velocity_coherence_time=0.08, rotational_velocity_std=120 * np.pi / 180, head_direction_smoothing_timescale=0.15, thigmotaxis=0.5, wall_repel_distance=0.1, wall_repel_strength=1.0)[source]

Bases: src.canns.task.navigation_base.BaseNavigationTask

Open-loop spatial navigation task that synthesises trajectories without incorporating real-time feedback from a controller.

calculate_theta_sweep_data()[source]

Calculate additional fields needed for theta sweep analysis. This should be called after get_data() to add ang_velocity, linear_speed_gains, and ang_speed_gains to the data.

get_data()[source]

Generates the inputs for the agent based on its current position.

get_empty_trajectory()[source]

Returns an empty trajectory data structure with the same shape as the generated trajectory. This is useful for initializing the trajectory data structure without any actual data.

import_data(position_data, times=None, dt=None, head_direction=None, initial_pos=None)[source]

Import external position coordinates and calculate derived features.

This method allows importing external trajectory data (e.g., from experimental recordings or other simulations) instead of using the built-in random motion model. The imported data will be processed to calculate velocity, speed, movement direction, head direction, and rotational velocity.

Parameters:
  • position_data (np.ndarray) – Array of position coordinates with shape (n_steps, 2) for 2D trajectories or (n_steps, 1) for 1D trajectories.

  • times (np.ndarray, optional) – Array of time points corresponding to position_data. If None, uniform time steps with dt will be assumed.

  • dt (float, optional) – Time step between consecutive positions. If None, uses self.dt. Required if times is None.

  • head_direction (np.ndarray, optional) – Array of head direction angles in radians with shape (n_steps,). If None, head direction will be derived from movement direction.

  • initial_pos (np.ndarray, optional) – Initial position for the agent. If None, uses the first position from position_data.

Raises:

ValueError – If position_data has invalid dimensions or if required parameters are missing.

Example

```python # Import experimental trajectory data positions = np.array([[0, 0], [0.1, 0.05], [0.2, 0.1], …]) # shape: (n_steps, 2) times = np.array([0, 0.1, 0.2, …]) # shape: (n_steps,)

task = OpenLoopNavigationTask(…) task.import_data(position_data=positions, times=times)

# Or with uniform time steps task.import_data(position_data=positions, dt=0.1) ```

reset()[source]

Resets the agent’s position to the starting position.

show_trajectory_analysis(show=True, save_path=None, figsize=(12, 3), smooth_window=50, **kwargs)[source]

Display comprehensive trajectory analysis including position, speed, and direction changes.

Parameters:
  • show (bool) – Whether to display the plot

  • save_path (str | None) – Path to save the figure

  • figsize (tuple[int, int]) – Figure size (width, height)

  • smooth_window (int) – Window size for smoothing speed and direction plots (set to 0 to disable smoothing)

  • **kwargs – Additional matplotlib parameters

duration = 20.0[source]
progress_bar = True[source]
run_steps[source]
total_steps[source]
class src.canns.task.open_loop_navigation.TMazeOpenLoopNavigationTask(w=0.3, l_s=1.0, l_arm=0.75, t=0.3, start_pos=(0.0, 0.15), duration=20.0, dt=None, **kwargs)[source]

Bases: OpenLoopNavigationTask

Open-loop navigation task in a T-maze environment.

This subclass configures the environment with a T-maze boundary, which is useful for studying decision-making and spatial navigation in a controlled setting.

Initialize T-maze open-loop navigation task.

Parameters:
  • w – Width of the corridor (default: 0.3)

  • l_s – Length of the stem (default: 1.0)

  • l_arm – Length of each arm (default: 0.75)

  • t – Thickness of the walls (default: 0.3)

  • start_pos – Starting position of the agent (default: (0.0, 0.15))

  • duration – Duration of the trajectory in seconds (default: 20.0)

  • dt – Time step (default: None, uses brainstate.environ.get_dt())

  • **kwargs – Additional keyword arguments passed to OpenLoopNavigationTask

class src.canns.task.open_loop_navigation.TMazeRecessOpenLoopNavigationTask(w=0.3, l_s=1.0, l_arm=0.75, t=0.3, recess_width=None, recess_depth=None, start_pos=(0.0, 0.15), duration=20.0, dt=None, **kwargs)[source]

Bases: TMazeOpenLoopNavigationTask

Open-loop navigation task in a T-maze environment with recesses at stem-arm junctions.

This variant adds small rectangular indentations at the T-junction, creating additional spatial features that may be useful for studying spatial navigation and decision-making.

Initialize T-maze with recesses open-loop navigation task.

Parameters:
  • w – Width of the corridor (default: 0.3)

  • l_s – Length of the stem (default: 1.0)

  • l_arm – Length of each arm (default: 0.75)

  • t – Thickness of the walls (default: 0.3)

  • recess_width – Width of recesses at stem-arm junctions (default: t/4)

  • recess_depth – Depth of recesses extending downward (default: t/4)

  • start_pos – Starting position of the agent (default: (0.0, 0.15))

  • duration – Duration of the trajectory in seconds (default: 20.0)

  • dt – Time step (default: None, uses brainstate.environ.get_dt())

  • **kwargs – Additional keyword arguments passed to OpenLoopNavigationTask

src.canns.task.open_loop_navigation.map2pi(a)[source]